Semiparametric Marginal and Association Regression Methods for Clustered Binary Data.
نویسندگان
چکیده
Clustered data arise commonly in practice and it is often of interest to estimate the mean response parameters as well as the association parameters. However, most research has been directed to inference about the mean response parameters with the association parameters relegated to a nuisance role. There is little work concerning both the marginal and association structures, especially in the semiparametric framework. In this paper, our interest centers on inference on the association parameters in addition to the mean parameters. We develop semiparametric methods for both complete and incomplete clustered binary data and establish the theoretical results. The proposed methodology is illustrated through numerical studies.
منابع مشابه
Analysis of Correlated Binary Data under Partially Linear Logistic Models
Clustered data arise commonly in practice and it is often of interest to estimate the mean response parameters as well as the association parameters. However, most research has been directed to address the mean response parameters with the association parameters relegated to a nuisance role. There is little work concerning both the marginal and association structures, especially in the semipara...
متن کاملA Pairwise Likelihood Method for Correlated Binary Data With/without Missing Observations under Generalized Partially Linear Single-index Models
Correlated data, such as multivariate or clustered data, arise commonly in practice. Unlike analysis for independent data, valid inference based on such data often requires proper accommodation of complex association structures among response components within clusters. Semiparametric models based on generalized estimating equations (GEE) methods, and their extensions, have become increasingly ...
متن کاملSemiparametric estimation in general repeated measures problems
The paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal or clustered data, conditional logistic regression for matched case–control studies, multivariate measurement error models, generalized linear mixed models with a...
متن کاملEstimated estimating equations: Semiparametric inference for clustered/longitudinal data
We introduce a flexible marginal modelling approach for statistical inference for clustered/longitudinal data under minimal assumptions. This estimated estimating equations (EEE) approach is semiparametric and the proposed models are fitted by quasi-likelihood regression, where the unknown marginal means are a function of the fixed-effects linear predictor with unknown smooth link, and variance...
متن کاملLocally efficient estimation of marginal treatment effects when outcomes are correlated: is the prize worth the chase?
Semiparametric methods have been developed to increase efficiency of inferences in randomized trials by incorporating baseline covariates. Locally efficient estimators of marginal treatment effects, which achieve minimum variance under an assumed model, are available for settings in which outcomes are independent. The value of the pursuit of locally efficient estimators in other settings, such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the Institute of Statistical Mathematics
دوره 100 2 شماره
صفحات -
تاریخ انتشار 2009